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Frequent and infrequent itemset mining are trending in data mining techniques. 

The pattern of Association Rule (AR) generated will help decision maker or 

business policy maker to project for the next intended items across a wide 

variety of applications. While frequent itemsets are dealing with items that are 

most purchased or used, infrequent items are those items that are infrequently 

occur or also called rare items.  The AR mining still remains as one of the most 

prominent areas in data mining that aims to extract interesting correlations, 

patterns, association or casual structures among set of items in the transaction 

databases or other data repositories. The design of database structure in 

association rules mining algorithms are based upon horizontal or vertical data 

formats. These two data formats have been widely discussed by showing few 

examples of algorithm of each data formats. The efforts on horizontal format 

suffers in huge candidate generation and multiple database scans which 

resulting in higher memory consumptions. To overcome the issue, the 

solutions on vertical approaches are proposed. One of the established 

algorithms in vertical data format is Eclat. ECLAT or Equivalence Class 

Transformation algorithm is one example solution that lies in vertical database 

format. Because of its ‘fast intersection’, in this paper, we analyze the 

fundamental Eclat and Eclat-variants such as diffset and sortdiffset. In 

response to vertical data format and as a continuity to Eclat extension, we 

propose a postdiffset algorithm as a new member in Eclat variants that use 

tidset format in the first looping and diffset in the later looping. In this paper, 

we present the performance of Postdiffset algorithm prior to implementation 

in mining of infrequent or rare itemset. Postdiffset algorithm outperforms 23% 

and 84% to diffset and sortdiffset in mushroom and 94% and 99% to diffset 

and sortdiffset in retail dataset. 
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1. INTRODUCTION  

The main objectives of association rules mining are to find the correlations, associations or casual 

structures among sets of items in the data repository. In other words, it allows non discovery of implicative and 

interesting tendencies in databases. Frequent itemset and infrequent itemset mining are critical fields in 

association rule mining. The fields are widely used across a variety of domains such as market basket analysis, 

remedial, biology, banking or retail services [1], [21]. Frequent or infrequent itemsets may contribute to big 

data generation. Undoubtedly, the critical issues regarding memory space consumption and data storage 

capacity will significantly effect prior to frequent or infrequent generation of itemsets [22], [23], [24]. The 

objective of frequent itemset is to find frequent grouping of items in database containing series of item 

transactions while the objective of infrequent itemset is contradict to frequent.  All itemsets which has value 
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that is greater than minimum support is called frequent itemsets. Infrequent itemset finds hidden association 

and correlation among rare itemsets. The rare consolidation of these itemsets may be interesting and gain more 

profit making. Rare cases have special concern since they represent significant difficulties for data mining 

algorithms. All itemsets which has the value that is lesser than minimum support is called infrequent itemsets. 

The idea of mining association rule originates from the analysis of market basket data [2]. Example of a simple 

rule is A customer who buys bread and butter will also tend to buy milk with probability s% and c%. The 

applicability of such rule to business problems makes the association rule to become a popular mining method.  

Previous efforts on ARM have manipulated the traditional horizontal database format [2,3]. Because 

of the persistent issues in storage and memory, later efforts turn to utilize on the vertical association rules 

mining algorithms [4]-[7]. The three basic models in frequent itemset mining are Apriori [7] that lies on 

horizontal format whereas Eclat and FP-Growth [9],[11] underlying database structure is on vertical format. 

Several works have been conducted on vertical data association rules mining [3]-[6], [8], [10]-[12]. 

Among those efforts, Eclat algorithm is known for its ‘fast’ intersection of its tidlist whereby the resulting 

number of tids is actually the support (frequency) of each itemsets [4], [8]. That is, we should break off each 

intersection as soon as the resulting number of tids is below minimum support threshold that we have set. 

Studies on Eclat algorithm has attracted many development efforts including [5], [7], [13]. Motivated to its 

‘fast intersection’, this paper presents a critical review in Eclat as well as to its variants. Our proposed solution, 

postdiffset algorithm performs moderately in selected dense dataset and good in selected sparse datasets. 

 

2. RELATED WORKS  

The Eclat stands for Equivalence Class Transformation [9], [12] takes a depth-first search and 

represents database in vertical layout such that each item is represented by a set of transaction IDs (called a 

tidset) whose transactions contain the item. Tidset of an itemset is generated by intersecting tidsets of its items. 

Because of the depth-first search, it is difficult to utilize the downward closure property like in Apriori. 

However, using tidsets has an advantage that there is no need for counting support, the support of an itemset is 

the size of the tidset representing it. The main operation of Eclat is intersecting tidsets, thus the size of tidsets 

is one of main factors affecting the running time and memory usage of Eclat. The bigger tidsets are, the more 

time and memory are needed. 

Based upon discovery in [4], a new vertical data representation, called Diffset is proposed [5]. The 

so-called dEclat, a diffset of Eclat algorithm. Instead of using tidsets, they use the difference of tidsets (called 

diffsets). Using diffsets has reduced the set size representing itemsets dramatically and thus operations on sets 

are much faster. The dEclat has shown to achieve significant improvements in performance as well as memory 

usage over Eclat, especially on dense databases. However, when the dataset is sparse, diffset loses its advantage 

over tidset. Therefore, the researchers suggested using tidset format at the start for sparse databases and then 

switching to diffset format later when a switching condition is met. 

As a continuity in [4], [5], a novel approach for vertical representation wherein the authors used the 

combination of tidset and diffset and sorted the diffset in descending order to represent databases [7]. The 

technique is claimed to eliminate the need of checking the switching condition and converting tidset to diffset 

format regardless of database condition either sparse or dense. Besides, the combination can fully exploit the 

advantages of both tidset and diffset format where the prelim results have shown a reduction in average diffset 

size and speed of database processing. 

 

3. ASSOCIATION RULE THEORETICAL BACKGROUND 

Following is the formal definition of the problem defined in [3]. Let I = {i1, i2,…im} for |m| > 0 be the 

set of items. D is a database of transactions where each transaction has a unique identifier called tid. Each 

transaction T is a set of items such that 𝑇 ⊆ 𝐼. An association rule is an implication of the form 𝑋 ⊆ 𝑌 where 

X represent the antecedent part of the rule and Y represents the consequent part of the rule where 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼  

and  𝑋 ∩ 𝑌 =  ∅. A set 𝑋 ⊆ 𝐼 is called an itemset. The itemset that satisfies minimum support is called frequent 

itemset. The support of rule 𝑋 ⇒ 𝑌 is the fraction of transactions in D containing both X and Y. 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ⇒ 𝑌) =
𝑋 ∪ 𝑌

|𝐷|
  

 where |D|is the total number of records in database. 

 

The confidence of rule 𝑋 ⇒ 𝑌 is the fraction of transactions in D containing X that also contain Y. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑋 ⇒ 𝑌) =  
𝑠𝑢𝑝𝑝 (𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝 (𝑋)
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A rule is frequent if its support is greater than minimum support (min_supp) threshold. The rules which satisfy 

minimum confidence (min_conf) threshold is called strong rule and both min_supp and min_conf are user 

specified values [4].  

4.0 REPRESENTATION OF DATA 

Data representation is critical in association rule mining. How data is stored in database, database layout and 

the searching strategy involved are all contribute to the performance of mining each itemsets.  

 

4.1 Search Space and Database Issues 

Either with horizontal data format or vertical data format, one must take into account on the search 

space strategy employment regardless the database condition of whether it is sparse database or dense database. 

The Apriori-inspired algorithms [5] perform well with sparse datasets such as market basket data when the 

frequent patterns are short. But, when the frequent patterns are long with dense datasets such as bioinformatics 

and telecommunication, the performance degrades drastically. The degradation is caused by many passes over 

the database that automatically incurs I/O overheads and it is computationally expensive in checking large sets 

of candidates by pattern matching. For m items, there could imply 2m – 2 additional frequent patterns that will 

explicitly examined by each algorithms. It is important to generate as few candidates as possible since 

computing the supports is time consuming [14]. As the best case, only frequent itemsets are generated and 

counted, unfortunately, the idea is impossible in general. 

 

4.2 Horizontal Verses Vertical Layouts 

In the horizontal layout, each transaction 𝑇𝑖  is represented as 𝑇𝑖 : (𝑡𝑖𝑑, 𝐼) where 𝑡𝑖𝑑 is the transaction 

identifier and 𝐼 is an itemset containing items occurring in the transaction.  The initial transaction consists of 

all transactions 𝑇𝑖. In the vertical layout, each item 𝑖𝑘 in the item base 𝐵 is represented as 𝑖𝑘: {𝑖𝑘 , 𝑡(𝑖𝑘)} and the 

initial transaction database consists of all items in the item base. For both layouts, it is possible to use the bit 

format to encode tids and also a combination of both layouts can be used [7], [8]. Figure 1 illustrates horizontal 

and vertical layout of data representation by [7]. The items in B consist of {a,b,c,d,e} and  each itemsets are 

allocated with unique identifiers (tids) for each transactions. This is clearly visualized in horizontal format. To 

switch to vertical format, every items {a,b,c,d,e} are then organized where all items are allocated with their 

corresponding tids. When this is done, it is clearly visualized the support of each items through the counting 

number of every item’s tids. 

 

 
 

Figure 1. Horizontal and Vertical Layout 

 

5.0 DESIGN OF ECLAT AND ECLAT-LIKE ALGORITHMS 

There are two main steps: candidate generation and pruning. In candidate generation, each k-itemset 

candidate is generated from two frequent (k-1)-itemsets and its support is counted, if its support is lower than 

the threshold, then it will be discarded, otherwise it is frequent itemsets and used to generate (k+1)-itemsets. 

Since Eclat uses the vertical layout, counting support is trivial. Depth-first searching strategy is done where it 

starts with frequent items in the item base and then 2-itemsets from 1-itemsets, 3-itemsets from 2-itemsets and 

so on.  

 

5.1 Traditional Eclat (tidset) 

A k-itemset is generated by taking union of two (k-1)-itemsets which have (k-2) items in common, the 

two (k-1)-itemsets are called parent itemsets of the k-itemset. Fox example, {, {ab} and {ac} are parent of 

{abc}. To avoid generating duplicate itemsets, (k-1)-itemsets are sorted in some order. To generate all possible 
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k-itemsets from a set of (k-1)-itemsets sharing (k-2)-items, union operation is conducted of a (k-1)-

itemsets with the itemsets that stand behind it in the sorted order, and this process takes place for all (k-1)-

itemsets except the last one. For example, from a set of  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, which share 0 item, then this could be 

sorted into alphabet order. To generate all 2-itemsets, the union of {𝑎} with {b,c,d,e} will result into 2-itemsets 

{ab,ac,ad,ae}, then for the union of {b} with {c,d,e} will result in {bc,bd,be}, similarly for {c} and {d}. Finally, 

all possible 2-itemsets {ab,ac,ad,ae,bc,bd,be,cd,ce,de} is generated to get all possible 3-itemsets until the rest 

of the number of possible itemsets. 

Eclat starts with prefix {} and the search tree is actually the initial search tree. To divide the initial 

search tree, it picks the prefix {a}, generate the corresponding equivalence class and does frequent itemset 

mining in the sub tree of all itemsets containing {a}, in this sub tree it divides further into two sub trees by 

picking the prefix {ab}: the first sub tree consists of all itemset containing {ab}, the other consists of all itemsets 

containing {a} but not {b}, and this process is recursive until all itemsets in the initial search tree are visited. 

The search tree of an item base {a,b,c,d,e} is represented by the tree as shown in figure 2. 

 

 

 

Figure 2. Search tree for {a,b,c,d,e} with null set  

Figure 3 illustrates of detail steps taken in Eclat algorithm when assuming that the initial transaction 

database is in vertical layout and represented by an equivalence class E with prefix {}. It uses prefix-based 

equivalence class along with bottom-up search. Frequent itemsets are generated by intersecting tidlist of all 

distinct pairs of atoms (i.e. i1..in) and checking the cardinality of the tidlist. This process is repeated until all 

frequent itemsets are enumerated. 

 

𝐼𝑛𝑝𝑢𝑡: 𝐸((𝑖1, 𝑡1), … (𝑖𝑛, 𝑡𝑛))|𝑃), 𝑠𝑚𝑖𝑛 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝐹(𝐸, 𝑠𝑚𝑖𝑛) 

1:  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑗 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛 𝐸 𝑑𝑜 

2:  𝑃 ≔ 𝑃 ∪ 𝑖𝑗 // add 𝑖𝑗to create a new prefix 

3:          𝑖𝑛𝑖𝑡(𝐸′) // initialize a new equivalence class with the new prefix P 

4:         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑘 𝑜𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛 𝐸 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑘 > 𝑗 𝑑𝑜 

5:                   𝑡𝑡𝑚𝑝 = 𝑡𝑗 ∩ 𝑡𝑘 

6:                  𝑖𝑓 |𝑡𝑡𝑚𝑝| ≥ 𝑠𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 

7:                             𝐸′ ≔ 𝐸 ∪ (𝑖𝑘 , 𝑡𝑡𝑚𝑝) 

8:                             𝐹 = 𝐹 ∪ (𝑖𝑘 ∪ 𝑃)   

9:                  𝑒𝑛𝑑 𝑖𝑓 

10:        𝑒𝑛𝑑 𝑓𝑜𝑟 

11: 𝑖𝑓 𝐸′ ≠ {} then  

12:  𝐸𝑐𝑙𝑎𝑡(𝐸′, 𝑠𝑚𝑖𝑛) 

13: 𝑒𝑛𝑑 𝑖𝑓  

14:  𝑒𝑛𝑑 𝑓𝑜𝑟 

 

Figure 3. Pseudocode for Eclat Algorithm 
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5.2 dEclat (diffset) 

The dEclat (different set or diffset) is proposed by [5] where the authors represent an itemset by tids 

that appear in the tidset of its prefix but do not appear in its tidsets. In abbreviation, diffset is the difference 

between two (2) tidsets (i.e. tidset of the itemsets and its prefix). Through diffset, the cardinality of sets 

representing itemsets is reduced rigorously and that contributes in faster intersection and less memory usage. 

Consider an equivalence class with prefix P contains the itemsets X and Y [7]. Let t(X) denotes the tidset of X 

and d(X) denotes the diffset of X. When using tidset format, we will have t(PX) and t(PY) available in the 

equivalence class and to obtain t(PXY) we check the cardinality of 𝑡(𝑃𝑋) ∩ 𝑡(𝑃𝑌) = 𝑡(𝑃𝑋𝑌). 

 When using diffset format, we will have d(PX) instead of t(PX) and 𝑑(𝑃𝑋) = 𝑡(𝑃) − 𝑡(𝑋), the set of 

tids in t(P) but not in t(X). Similarly, we have d(PY) = t(P) – t(Y). So the support of PX is not the size of its 

diffset. By the definition of d(PX), it can be seen that |𝑡(𝑃𝑋)| = |𝑡(𝑃)| − |𝑡(𝑃) − 𝑡(𝑋)| = |𝑡(𝑃)| − |𝑑(𝑃𝑋)|. 
In other word, sup(𝑃𝑋) = 𝑠𝑢𝑝(𝑃) − |𝑑(𝑃𝑋)|. Refer to the illustration in figure 4. 

 

 
 

Figure 4. Difference of itemset A and B 

To use diffset format, the initial transaction database in vertical layout is firstly converted to diffset 

format in which diffset of items are sets of tids whose transactions do not contain items. This is deduced from 

the definition of diffset, the initial transaction database in vertical layout is an equivalence with the prefix P={}, 

so the tidset of P includes all tids, all transactions contain P, and the diffset of an item i is 𝑑(𝑖) = 𝑡(𝑃) − 𝑡(𝑖), 

this is a set of tids whose transactions do not contain i. From this initial equivalence class, we could generate 

all itemsets with their diffsets and supports. The dEclat is different from Eclat in step 5, instead of generating 

a new tidset, a new diffset is generated. The performance and memory usage of dEclat has shown to achieve 

significant improvements over traditional Eclat (tidset) especially in dense database. But when database is 

sparse, it loses its advantages over tidsets. Then in [5] the authors suggested to use tidset format at starting for 

sparse database and later switch to diffset format when switching condition is met. From this starting point, 

postdiffset is proposed. 

 

5.3 Com-Eclat(sortdiffset) 

The com-Eclat (combination of tidsets + diffsets and sort) is introduced by [7] to enhance dEclat 

during switching condition. When switching process takes place, there exist tidsets which do not satisfy the 

switching condition, thus these tidsets remain as tidsets instead of diffset format. The situation results in both 

tidsets and diffsets format of itemsets in particular equivalence class and the next intersection process will 

involve both formats.  

 

6.0 POSTDIFFSET ALGORITHM 

Postdiffset is designed prior to suggestion that is made in [5] to use tidset format at starting for sparse 

database and later switch to diffset format when switching condition is met. Conceptually, by given equivalence 

class with prefix P consisting of itemsets 𝑋𝑖 in some order, intersection of 𝑃𝑋𝑖 with all 𝑃𝑋𝑗 with j>i is to be 

performed in order to obtain a new equivalence class with prefix 𝑃𝑋𝑖 and frequent itemsets 𝑋𝑖𝑋𝑗. 𝑃𝑋𝑖 and 𝑃𝑋𝑗 

could be in either tidset or diffset format. If 𝑃𝑋𝑖 is in diffset format and 𝑃𝑋𝑗  is in tidset format, 𝑑(𝑃𝑋𝑖) ∩

𝑡(𝑃𝑋𝑗) = 𝑑(𝑃𝑋𝑗𝑋𝑖) which belongs to the equivalence class of prefix 𝑃𝑋𝑗, not 𝑃𝑋𝑖  as expected. In other words, 

in order to do intersection between itemsets in diffset format and itemsets in tidset format to produce new 

equivalence classes properly, itemsets in tidset format must stand before itemsets in diffset format in the order 

of their equivalence class. That can be achieved by swapping (sorting) itemsets in diffset and tidset format, a 

process which has the complexity O(n) where n is the number of itemsets of the equivalence class.  

In postdiffset algorithm, the first level of looping is based on tidsets process, follows by the second 

level onwards of looping are getting the result of diffset (difference intersection set) between ith column and 

i+1th column and save to db. Referring to figure 5, the min_support threshold value is determined in terms of 

percentage where the user-specified min_support value will be divided by 100 and multiply with total rows 
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(records) of each dataset. Then in each loop, starting with the first loop, if the support is greater than or equal 

(>=) to min_support, then, in postdiffset, the first level of looping is based on tidsets process, follows by the 

second level onwards of looping are getting the result of diffset (difference intersection set) between ith column 

and i+1th column and save to database.  

 

 

 
 

𝐼𝑛𝑝𝑢𝑡: 𝐸((𝑖1, 𝑡1), … (𝑖𝑛, 𝑡𝑛))|𝑃), 𝑠𝑚𝑖𝑛 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝐹(𝐸, 𝑠𝑚𝑖𝑛) 

1. start 

2. //get min_support 

3. min_supp=number_of_rows*percentage_min_support; 

4. run tidset for first loop; 

5. if(support<=min_support){ 

6. add data to the next process; 

7. add data into db 

8. } 

9. end tidset 

10. //for next loop 

11. start looping ; 

12. run diffset; 

13. if(support<=min_support){ 

14. add data to the next process; 

15. add data into db 

16. } 

17. end looping. 

18. end diffset; 

19. flush value for current/last transaction data; 

20. end 

Figure 5. Postdiffset Pseudocode 

In figure 5, the min_support is measured based on the multiplication of the number of rows of itemsets 

in database with the user specified percentage of min_support. Then, each itemset is intersected with its 

transaction id (tid) for the first looping. If the support of each itemset is less than or equal to the min_support 

(itemset in this condition is very rare as to indicate the itemset of abnormal and peculiar cases), then that itemset 

is passed to the second level of looping. Starting from second looping onwards, each tids is intersected with its 

difference set (diffset) until finish. The experimentation of postdiffset algorithm is presented in the next section. 

 

5.0 EXPERIMENTATION 

All experiments are performed on a Dell N5050, Intel ® Pentium ® CPU B960 @ 2.20 GHz with 

8GB RAM in a Win 7 64-bit platform. The software specification for algorithm development is deployed using 

open source software i.e. MySQL version 5.6.20 – MySQL community server (GPL) for our database server, 

Apache/2.4.10 (Win32) OpenSSL/1.0.1i PHP/5.5.15 for our web server, php as a programming language and 

phpMyAdmin with version 4.2.7.1, the latest stable version as to handle the administration of MySQL over the 

Web. The phpMyAdmin [91] is a free software tool written in PHP, that supports a wide range of operations 

on MySQL, MariaDB and Drizzle. The database characteristics is shown in Table 1. 

 

Table 1. Database Characteristics 
Datasets Num. of 

Transactions 

Length 

(Attribute) 

Size (KB) Category 

Chess 3196 37 335 Dense 

Mushroom 8125 43 558 Dense 

Retail 88162 68 5143 Sparse 
T40I10D100K 100001 32 15116 Sparse 

 

http://mysql.com/
http://php.net/
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5.1 Empirical Results 

For the ease and fast experimentation purposes, we have modified datasets to be only thousand rows 

of itemsets that are randomly processed for mining purposes. Our experimentation is with regards to dEclat 

(diffset), com-Eclat (sortdiffset) and postdiffset algorithm because from our past experimentation on postdiffset 

implementation in frequent itemset mining, the results of traditional-Eclat (tidset) will always be the last in 

performance and memory usage among those three (3) algorithms. 

Figure 6 shows the graph of performance evaluation with regards to execution time (in second) 

within four (4) datasets i.e. chess, mushroom, retail and T10I4D100K. 

 

Figure 6. Performance on diffset, sortdiffset and postdiffset in chess, mushroom, retail and T10I4D100K 

Referring to figure 6, in dense dataset, postdiffset lose its performance by 63% to diffset and 44% to sortdiffset 

in chess. In mushroom, postdiffset outperform with 23% in diffset and 84% in sortdiffset. For sparse dataet 

category, postdiffset tremendously outperform with 94% and 95% to diffset in retail and T10I4D100K. The 

algorithm continues to outperform dramatically in sortdiffset with 99% both in retail and T10I4D100K dataset. 

 

 

6.0 CONCLUSION AND FUTURE DIRECTION 

  The performance of postdiffset varies depending upon datasets. It is best executed in sparse datasets 

i.e. retail and T10I4D100K while in dense datasets i.e. chess, it loses its reputation towards diffset and 

sortdiffset. But in mushroom, postdiffset did well among the other two (2) algorithms. The simple conclusion 

can be made where the nature of datasets in terms of how many time the occurrence of itemsets could me one 

of the contributing factor to the overall performance of certain association rule infrequent mining algorithms.  

Our next focus could be the enforcement of confidence level or other interenstingness measure towards 

itemsets rather than just focusing on minimum support value. 
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